

With Osbert Bastani, Varun Gupta, Chris Jung, Ramya Ramalingam, and Aaron Roth

Prediction Sets and Conformal Prediction

- \diamond Traditionally: given features $x \in \mathcal{X}$, produce accurate point estimate for label $y_x \in \mathcal{Y}$
- \diamond A different perspective: create a prediction set $T(x) \subseteq \mathcal{Y}$ that contains y_x with probability 0.9:

$$\Pr_{(x,y_x)}[y_x \in T(x)] = 0.9 \text{ ("valid 0.9 marginal coverage")}$$

- Conformal prediction: A widely adopted paradigm for building prediction sets:
- 1. Pre-train a conformal score function $s(x, y) \in \mathbb{R}$: higher values \Rightarrow more disagreement between x, y
- 2. Given x, compute a threshold q and output prediction set $T(x) = \{y : s(x, y) \le q\}$
- ♦ Conformal guarantees: exchangeable dataset ⇒ valid 0.9 coverage on test data, no matter the score

Our contribution: MVP (MultiValid Prediction)

Vanilla Conformal Prediction

- Offline (batch) setting: a separate training/calibration set and a test set
- ♦ Requires I.I.D. or exchangeable data
- Marginal coverage guarantees

Our Method: MVP

- Online setting: data revealed sequentially, used both for training and testing
- Works even for adversarial data
- MultiValid coverage: Stronger than marginal:
 - ♦ Valid coverage on arbitrary feature space regions
 - Threshold Calibration (validity conditional on the predicted threshold)

MultiValidity ⇒ Group Conditional Coverage

- \diamond Given a group collection $\mathcal{G} = \{G_1, G_2, ..., G_n\}$ where each $G_i \subseteq \mathcal{X}$ (groups can overlap)
 - \diamond If $x \in \mathcal{X}$ are individuals and $y \in Y$ their credit scores, groups G_i could be demographic groups
 - \diamond If $x \in \mathcal{X}$ encode market data and $y \in Y$ represent stock volatility, groups G_i could be market events
- \diamond MultiValid coverage \Rightarrow valid 0.9 coverage conditional on $x \in G_i$ for all i
- Ensures that no group receives unfairly bad coverage

MVP: MultiValid Prediction

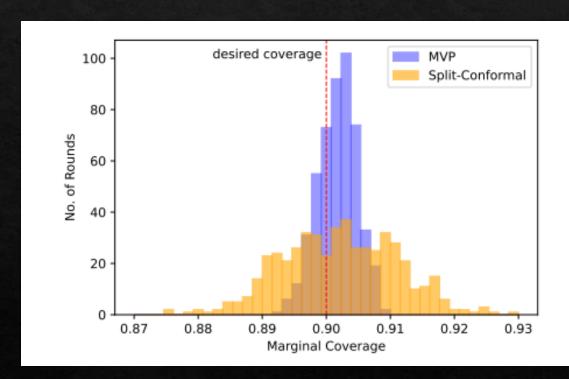
Adversarial data points $(x_1, y_1), ..., (x_T, y_T)$ revealed sequentially

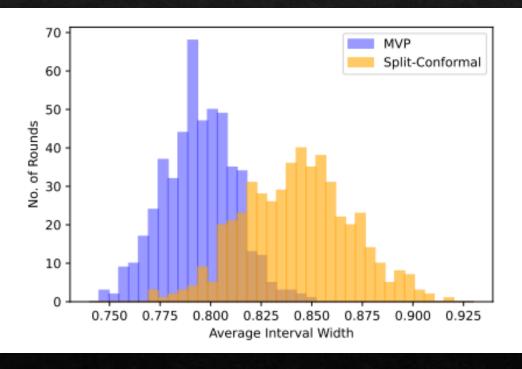
In round t: Get score s_t : $\mathcal{X} \times \mathcal{Y} \to [0,1]$, feature $x_t \to F$ orm prediction set $T_t \to F$ See label y_t

How to pick threshold $q_t \in \{0, \frac{1}{m}, \frac{2}{m}, \dots, \frac{m-1}{m}, 1\}$ at every round $t = 1 \dots T$:

- 1. For each threshold value $\frac{i}{m}$, softmax its past miscoverage rates over all groups $G \in \mathcal{G}$
- 2. This softmax tells for each candidate threshold $\frac{i}{m}$ if it tends to over- or undercover
- 3. Find $i \in [m]$ such that $\frac{i-1}{m}$ undercovers but $\frac{i}{m}$ overcovers. Randomize over these two!

Empirical Performance


Strong coverage guarantees on various kinds of data:


- IID/Exchangeable data
- Covariate shift
- Time series
- Adversarial data

Matches/exceeds performance of existing methods "on their turf":

- Split conformal prediction [Lei et al.]
- Conformal prediction under covariate shift [Tibshirani et al.]
- Conservative nonoverlapping groupconditional coverage [Foygel Barber et al.]
- ACI [Gibbs and Candes]

Empirical Performance

Thanks!

Practical Adversarial Multivalid Conformal Prediction

Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, Aaron Roth

