Binary Scoring Rules that Incentivize Precision

Eric Neyman George Noarov Matt Weinberg

Motivation

Consider forecasting the weather via a sequence of computationally costly weather simulations. Forecaster/expert runs simulations and reports back the forecast for tomorrow. We want to devise a reward scheme that:

- Rewards forecaster, by comparing forecast and realized weather;
- Incentivizes honest forecasts - i.e. elicits forecaster's true belief;
- Incentivizes the forecaster to apply maximum effort - i.e. to run the simulation many times in order to obtain a precise forecast.

We consider reward schemes based on proper scoring rules: a classic way to reward the forecaster's prediction while enforcing truthfulness. However,

Not all scoring rules equally encourage the forecaster's precision.
We build a framework for ranking proper scoring rules by their incentivization properties, and find explicit optimally incentivizing proper scores.

Model

Reward scheme

Consider predicting p , the probability of rain tomorrow. Today, p is drawn uniformly from $[0,1]$. Expert gets a coin with bias p, each flip priced at $\mathrm{c}>0$. Today, she flips the coin as often as desired, and submits forecast $q \in[0,1]$.
Tomorrow, a symmetric binary scoring rules : $(0,1) \rightarrow \mathbb{R}$ rewards the expert's prediction q : The expert receives $\mathrm{s}(\mathrm{q})$ if it rains, and $\mathrm{s}(1-\mathrm{q})$ if it does not rain.
The scoring rule s is required to be proper and normalized.

- s is proper, that is, expert is incentivized to report honestly

For all p , expert's expected reward $\mathrm{ps}(\mathrm{q})+(1-\mathrm{p}) \mathrm{s}(\mathrm{q})$ is maximized at $\mathrm{q}=\mathrm{p}$

- s is normalized, i.e. satisfies two conditions

A completely uninformed expert gets reward 0 - that is, $\mathrm{s}\left(\frac{1}{2}\right)=0$.

- A perfect expert gets expected reward 1 - that is, $\int_{0}^{1}(x s(x)+(1-x) s(1-x)) d x=1$.

Information acquisition

- The expert is Bayesian, and starts off with a uniform prior on p .
- Expert's initial prediction is $\mathrm{q}_{0}=\frac{1}{2}$, the mean of her prior.
- After each sample, she updates her belief and forms prediction via

Laplace Rule of Succession: if n flips and h heads, prediction is $q_{n}=\frac{h+1}{n+2}$.

- Expert dynamically reevaluates whether to keep sampling after each flip.

Decision-making: Locally and globally adaptive experts

- Locally adaptive expert myopically stops flipping as soon as per-flip cost exceeds ex-ante expected reward gain from flipping one more time.
- Globally adaptive expert keeps flipping until it is not part of her globally optimal strategy for the future.

Main Result: An Incentivization Index

Consider a locally or globally adaptive expert. Consider any per-flip cost $\mathrm{c}>0$, and a proper normalized symmetric binary scoring rule s.
Choose $\ell \geq 1$, and let $\operatorname{Error}_{\mathrm{C}}^{\ell}(\mathrm{s}):=\mathbb{E}\left[|\mathrm{p}-\mathrm{q}|^{\ell}\right]$ be the expected $\ell^{\text {th }}$ power error of expert's prediction q when she is rewarded via scoring rule s and pays c per flip. The expectation is over randomness in p and expert's flips. Let $R(x):=x s(x)+(1-x) s(1-x)$ be the ex-ante expected reward for truthful predictions x .
Define the $\ell^{\text {th }}$-order Incentivization Index of scoring rule s by

$$
\operatorname{Ind}^{\ell}(s):=\int_{0}^{1}\left(\frac{x(1-x)}{R^{\prime \prime}(x)}\right)^{\frac{\ell}{4}} d x
$$

The Incentivization Index characterizes the expected prediction error:

$$
\lim _{\mathrm{c} \rightarrow 0} \mathrm{c}^{-\ell / 4} \cdot \operatorname{Error}_{\mathrm{c}}^{\ell}(\mathrm{s})=\mu_{\ell} \cdot 2^{\ell / 4} \cdot \operatorname{Ind}^{\ell}(\mathrm{s})
$$

where μ_{ℓ} is the $\ell^{\text {th }}$ moment of a standard Gaussian.

Interpretation

For two scoring rules $\mathrm{s}_{1}, \mathrm{~s}_{2}$, if $\operatorname{Ind}^{\ell}\left(\mathrm{s}_{1}\right)<\operatorname{Ind}^{\ell}\left(\mathrm{s}_{2}\right)$ then s_{1} gives better expected $\ell^{\text {th }}$ power error than s_{2}, for all small enough costs c .

Simulation results:

Even though the above characterization is shown asymptotically as $\mathrm{c} \rightarrow 0$, our simulations show that the Incentivization Index is trustworthy even for nonvanishing/"practical" values of c .

Intuition behind the Index

Suppose a locally adaptive expert has made n flips and gotten h heads. Her expected ex-ante payoff gain from flipping once more is:
$\underbrace{\frac{h+1}{n+2} R\left(\frac{h+2}{n+3}\right)+\frac{n-h+1}{n+2} R\left(\frac{h+1}{n+3}\right)}-\underbrace{R\left(\frac{h+1}{n+2}\right)} \approx R^{\prime \prime}(p) \cdot \frac{p(1-p)}{2 n^{2}}$,
expected reward after another flip exp. reward now
via Taylor for c small enough that she flips long enough until $\frac{\mathrm{h}+1}{\mathrm{n}+2} \approx \mathrm{p}$
She will flip while $R^{\prime \prime}(p) \cdot \frac{p(1-p)}{2 n^{2}} \gtrsim c$, thus making $n \approx \sqrt{\frac{p(1-p) R^{\prime \prime}(p)}{2 c}}$ flips. Her final estimate $\mathrm{q} \sim \operatorname{Bin}\left(\mathrm{p}, \sqrt{\frac{\mathrm{p}(1-\mathrm{p}) \mathrm{R}^{\prime \prime}(\mathrm{p})}{2 \mathrm{c}}}\right) \approx \mathrm{N}\left(\mathrm{p}, \sqrt[4]{\frac{2 \mathrm{p}(1-\mathrm{p}) \mathrm{c}}{\mathrm{R}^{\prime \prime}(\mathrm{p})}}\right)$. So:
$\operatorname{Error}_{\mathrm{c}}^{2}(\mathrm{~s}) \approx \int_{0}^{1} \operatorname{Var}\left(\mathrm{~N}\left(\mathrm{p}, \sqrt[4]{\frac{2 \mathrm{p}(1-\mathrm{p}) \mathrm{c}}{\mathrm{R}^{\prime \prime}(\mathrm{p})}}\right)\right) \mathrm{dp}=\int_{0}^{1} \sqrt{\frac{2 \mathrm{p}(1-\mathrm{p}) \mathrm{c}}{\mathrm{R}^{\prime \prime}(\mathrm{p})}} \mathrm{d} p=\sqrt{\mathrm{c}} \cdot \operatorname{Ind}^{2}(\mathrm{~s})$.

Optimal Scoring Rules: Closed Form and Performance
For every $\ell \geq 1$, the unique (up to normalization) scoring rule that optimizes the Incentivization Index has a closed form! For $\ell \geq 1$, the optimal score is:

$$
\mathrm{s}_{\ell, \text { OPT }}(\mathrm{x}):= \begin{cases}\kappa_{\ell} \int_{1 / 2}^{\mathrm{x}}\left(\mathrm{t}^{\ell-8}(1-\mathrm{t})^{2 \ell+4}\right)^{1 /(\ell+4)} \mathrm{dt}, & \text { if } \mathrm{x} \leq 1 / 2, \\ \kappa_{\ell} \int_{1 / 2}^{\mathrm{x}}\left(\mathrm{t}^{\ell}(1-\mathrm{t})^{2 \ell-4}\right)^{1 /(\ell+4)} \mathrm{dt}, & \text { if } \mathrm{x} \geq 1 / 2 .\end{cases}
$$

Here, κ_{ℓ} is a normalization constant. Some special cases: for $\ell=2$, we have for $x \in[1 / 2,1)$ that

$$
\mathrm{s}_{2, \mathrm{OPT}}(\mathrm{x})=\frac{3}{5} \kappa_{2}\left(\mathrm{x}^{5 / 3}-0.5^{5 / 3}\right)
$$

and as $\ell \rightarrow \infty$, the optimal rule pointwise converges, for $\mathrm{x} \in(0,1)$, to

$$
\mathrm{s}_{\infty, \mathrm{OPT}}(\mathrm{x}):=\frac{5}{9}\left(48 \mathrm{x}^{4}-128 \mathrm{x}^{3}+96 \mathrm{x}^{2}-11\right) .
$$

How good are classical scores $\left(\log _{\mathrm{s}_{\text {log }}}(\mathrm{x})=\ln \mathrm{x}, \operatorname{Brier} \mathrm{s}_{\text {quad }}(\mathrm{x})=-(1-\right.$ $\mathrm{x})^{2}$, spherical $\mathrm{s}_{\text {sph }}(\mathrm{x})=-\mathrm{x} / \sqrt{\mathrm{x}^{2}+(1-\mathrm{x})^{2}}$, "hs" $\left.\mathrm{S}_{\mathrm{hs}}(\mathrm{x})=-\sqrt{(1-\mathrm{x}) / \mathrm{x}}\right)$ at incentivizing precision?

Figure 1:For each score s and power ℓ, this table shows normalized ratio $\sqrt[\ell]{\operatorname{Ind}^{\ell}\left(\mathrm{s}_{\ell, \text { OPT }}\right) / \operatorname{Ind}^{\ell}(\mathrm{s}) \text {. }}$

Future Directions

- Extension to non-uniform priors. What if a-priori, the probability of rain tomorrow is non-uniform?
- Extension to other metrics of precision. We aim to minimize the $\ell^{\text {th }}$ powe distance between prediction q and true probability p . What about optimizing the Bregman divergence between p and q ?
- Other models of costly information acquisition.
- Other structures of effort levels. In our work, forecaster has countably many effort levels.

