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Motivation

Consider forecasting the weather via a sequence of computationally costly
weather simulations. Forecaster/expert runs simulations and reports back
the forecast for tomorrow. We want to devise a reward scheme that:

Rewards forecaster, by comparing forecast and realized weather;
Incentivizes honest forecasts — i.e. elicits forecaster’s true belief;
Incentivizes the forecaster to applymaximum effort — i.e. to run the
simulation many times in order to obtain a precise forecast.

We consider reward schemes based on proper scoring rules: a classic way
to reward the forecaster’s prediction while enforcing truthfulness. However,

Not all scoring rules equally encourage the forecaster’s precision.

Webuilda framework for rankingproper scoring rulesby their incentivization
properties, and find explicit optimally incentivizing proper scores.

Model

Reward scheme

Consider predicting p, the probability of rain tomorrow. Today, p is drawn
uniformly from [0, 1]. Expert gets a coin with bias p, each flip priced at c > 0.
Today, she flips the coin as often as desired, and submits forecast q ∈ [0, 1].

Tomorrow, a symmetric binary scoring rule s : (0, 1) → R rewards theexpert’s
prediction q: The expert receives s(q) if it rains, and s(1−q) if it does not rain.

The scoring rule s is required to be proper and normalized.
s is proper, that is, expert is incentivized to report honestly:

For all p, expert’s expected reward p s(q)+(1−p) s(q) is maximized at q = p.

s is normalized, i.e. satisfies two conditions:
A completely uninformed expert gets reward 0— that is, s(1

2) = 0.
A perfect expert gets expected reward 1— that is,

∫ 1
0 (x s(x) + (1 − x) s(1 − x)) dx = 1.

Information acquisition

The expert is Bayesian, and starts off with a uniform prior on p.
Expert’s initial prediction is q0 =

1
2, the mean of her prior.

After each sample, she updates her belief and forms prediction via
Laplace Rule of Succession: if n flips and h heads, prediction is qn = h+1

n+2.
Expert dynamically reevaluates whether to keep sampling after each flip.

Decision-making: Locally and globally adaptive experts

Locally adaptive expert myopically stops flipping as soon as per-flip cost c
exceeds ex-ante expected reward gain from flipping onemore time.
Globally adaptive expert keeps flipping until it is not part of her globally
optimal strategy for the future.

Main Result: An Incentivization Index

Consider a locally or globally adaptive expert. Consider any per-flip cost
c > 0, and a proper normalized symmetric binary scoring rule s.

Choose ` ≥ 1, and let Error`c(s) := E
[
|p − q|`

]
be the expected `th power

error of expert’s prediction q when she is rewarded via scoring rule s and
pays c per flip. The expectation is over randomness in p and expert’s flips.

Let R(x) := x s(x) + (1 − x) s(1 − x) be the ex-ante expected reward for
truthful predictions x.

Define the `th-order Incentivization Index of scoring rule s by

Ind`(s) :=
∫ 1

0

(
x(1 − x)
R′′(x)

)`
4
dx.

The Incentivization Index characterizes the expected prediction error:

lim
c→0

c−`/4 · Error`c(s) = µ` · 2`/4 · Ind`(s),

where µ` is the `th moment of a standard Gaussian.

Interpretation:

For two scoring rules s1, s2, if Ind`(s1) < Ind`(s2) then s1 gives better ex-
pected `th power error than s2, for all small enough costs c.

Simulation results:

Even though the above characterization is shown asymptotically as c → 0,
our simulations show that the Incentivization Index is trustworthy even for
nonvanishing/“practical” values of c.

Intuition behind the Index

Suppose a locally adaptive expert has made n flips and gotten h heads. Her
expected ex-ante payoff gain from flipping once more is:
h + 1
n + 2

R
(

h + 2
n + 3

)
+

n − h + 1
n + 2

R
(

h + 1
n + 3

)
︸ ︷︷ ︸

expected reward after another flip

− R
(

h + 1
n + 2

)
︸ ︷︷ ︸

exp. reward now

≈ R′′(p) · p(1 − p)
2n2 ,

via Taylor for c small enough that she flips long enough until h+1
n+2 ≈ p.

She will flip while R′′(p) · p(1−p)
2n2 ' c, thus making n ≈

√
p(1−p)R′′(p)

2c flips.

Her final estimate q ∼ Bin
(

p,

√
p(1−p)R′′(p)

2c

)
≈ N

(
p, 4
√

2p(1−p)c
R′′(p)

)
. So:

Error2c(s) ≈
∫ 1

0
Var

(
N

(
p, 4
√

2p(1−p)c
R′′(p)

))
dp =

∫ 1

0

√
2p(1−p)c

R′′(p) dp =
√

c·Ind2(s).

Optimal Scoring Rules: Closed Form and Performance

For every ` ≥ 1, the unique (up to normalization) scoring rule that optimizes
the Incentivization Index has a closed form! For ` ≥ 1, the optimal score is:

s`,OPT(x) :=

κ`
∫ x
1/2

(
t`−8(1 − t)2`+4

)1/(`+4)
dt, if x ≤ 1/2,

κ`
∫ x
1/2

(
t`(1 − t)2`−4

)1/(`+4)
dt, if x ≥ 1/2.

Here, κ` is a normalization constant. Some special cases: for ` = 2, we have
for x ∈ [1/2, 1) that

s2,OPT(x) =
3
5
κ2
(
x5/3 − 0.55/3

)
,

and as ` → ∞, the optimal rule pointwise converges, for x ∈ (0, 1), to

s∞,OPT(x) :=
5
9
(48x4 − 128x3 + 96x2 − 11).

How good are classical scores (log slog(x) = ln x, Brier squad(x) = −(1 −
x)2, spherical ssph(x) = −x/

√
x2 + (1 − x)2, “hs” shs(x) = −

√
(1 − x)/x) at

incentivizing precision?

Figure 1:For each score s and power `, this table shows normalized ratio√̀
Ind`(s`,OPT)/Ind`(s).

Future Directions

Extension to non-uniform priors. What if a-priori, the probability of rain
tomorrow is non-uniform?
Extension to other metrics of precision. We aim tominimize the `th power
distance between prediction q and true probability p. What about
optimizing the Bregman divergence between p and q?
Other models of costly information acquisition.
Other structures of effort levels. In our work, forecaster has countably
many effort levels.


